BIEKE MASSELIS AND IVO DE PAUW Animation Maths

Chapter 1, David Ritter; 2, John Evans; 3, Wouter Verweirder; 4, Daryl Beggs, Juan Pablo Arancibia Medina; 5, Stephanie Berghaeuser; 6, Martin Walls; 7, 14, Wouter Tansens; 8, Danie Pratt; 9, Ivo De Pauw; 10, Caetano Lacerda; 11, Ken Munyard; 12, Bieke Masselis; 13, Cornelia Roessing; p.25, p.95, Wouter Tansens; p.46, Wouter Verweirder; p.50, Leo Storme; p.175, Bieke Masselis; p.314, Yu-Sung Chang.

D/2015/45/483 - ISBN 978 94 014 3204 7 - NUR 918

Layout: Jurgen Leemans, Peter Flynn and Bavo Langerock Cover design: Stef Lantsoght, Keppie en Keppie © Bieke Masselis, Ivo De Pauw and Publisher Lannoo n.v., Tielt, 2016. LannooCampus is part of the Lannoo Publishing Group

All rights reserved No part of this book may be reproduced, in any form or by any means, without permission in writing from the publiser.

Publisher LannooCampus Erasme Ruelensvest 179 bus 101 B - 3001 Leuven Belgium www.lannoocampus.com.

Content

Acknowledgments		
Chapt	er 1 · Arithmetic Refresher	17
11	Algebra	
	Real Numbers	18
	Real Polynomials	23
1.2	Equations in one variable	25
	Linear Equations	25
	Ouadratic Equations	26
1.3	Exercises	32
Chapt	ter 2 · Linear systems	35
2.1	Definitions	36
2.2	Methods for solving linear systems	38
	Solving by substitution	38
	Solving by elimination	39
2.3	Exercises	43
Chapt	ter 3 · Trigonometry	45
3.1	Angles	46
3.2	Triangles	48
3.3	Right Triangle	52
3.4	Unit Circle	53
3.5	Special Angles	55
	Trigonometric ratios for an angle of $45^\circ = \frac{\pi}{4}$ rad	56
	Trigonometric ratios for an angle of $30^\circ = \frac{\pi}{6}$ rad	56
	Trigonometric ratios for an angle of $60^\circ = \frac{\pi}{3}$ rad	57
	Overview	57
3.6	Pairs of Angles	58
3.7	Sum Identities	58
3.8	Inverse trigonometric functions	61
3.9	Exercises	63

Chapter 4 · Functions		65	
4.1	4.1 Basic concepts on real functions		
4.2	Polynomial functions	67	
	Linear functions	67	
	Quadratic functions	69	
4.3	Intersecting functions	71	
4.4	Trigonometric functions	73	
	Elementary sine function	73	
	General sine function	73	
	Transversal oscillations	77	
4.5	Inverse trigonometric functions	77	
4.6	Exercises	80	
Chapt	er 5 · The Golden Section	83	
5.1	The Golden Number	84	
5.2	The Golden Section	86	
	The Golden Triangle	86	
	The Golden Rectangle	87	
	The Golden Spiral	88	
	The Golden Pentagon	90	
	The Golden Ellipse	90	
5.3	Golden arithmetics	91	
	Golden Identities	91	
	The Fibonacci Numbers	92	
5.4	The Golden Section worldwide	94	
5.5	Exercises	97	
Chapt	er 6 · Coordinate systems	99	
6.1	Cartesian coordinates	100	
6.2	Parametric curves	100	
6.3	Polar coordinates	103	
6.4	Polar curves	106	
	A polar superformula	107	
6.5	Exercises	109	

Chapt	ter 7 · Vectors	111
7.1	The concept of a vector	112
	Vectors as arrows	112
	Vectors as arrays	113
	Free Vectors	116
	Base Vectors	116
7.2	Addition of vectors	117
	Vectors as arrows	117
	Vectors as arrays	117
	Vector addition summarized	118
7.3	Scalar multiplication of vectors	119
	Vectors as arrows	119
	Vectors as arrays	119
	Scalar multiplication summarized	120
	Properties	120
7.4	Vector subtraction	121
	Creating free vectors	121
	Euler's method for trajectories	122
7.5	Decomposition of vectors	123
	Decomposition of a plane vector	123
	Base vectors defined	124
7.6	Dot product	124
	Definition	124
	Geometric interpretation	126
	Orthogonality	128
7.7	Cross product	129
	Definition	129
	Geometric interpretation	132
	Parallelism	133
7.8	Normal vectors	135
7.9	Exercises	137
Chant	ter 8 · Parameters	139
81	Parametric equations	$\frac{100}{140}$
82	Vector equation of a line	141
8.3	Intersecting straight lines	145
8.4	Vector equation of a plane	147
8.5	Exercises	151
0.0		101

Chapt	er 9 · Kinematics	153
9.1	Measures	154
	Precision	154
	Units	154
9.2	Deltatime	155
9.3	Translational motion	155
	Rectilinear motion with constant velocity (RMCV)	158
	Rectilinear motion with constant acceleration (RMCA)	158
	Free Fall	161
	Summary	164
9.4	Circular motion	166
	Uniform circular motion (UCM)	166
	Nonuniform circular motion (NCM)	173
	Summary	176
9.5	Planar Curvilinear Motion	177
	Normal-tangential components	178
	Radial-angular components	181
9.6	Independence of Motion	184
	Combined rectilinear motions with constant velocity	184
	Projectile motion (PM)	185
9.7	Exercises	190
Chapt	er 10 · Collision detection	193
10.1	Collision detection using circles and spheres	194
	Circles and spheres	194
	Intersecting line and circle	196
	Intersecting circles and spheres	198
10.2	Collision detection using vectors	201
	Location of a point with respect to other points	201
	Altitude to a straight line	202
	Altitude to a plane	204
	Frame rate issues	206
	Location of a point with respect to a polygon	207
10.3	Exercises	210

Chapter 11 · Matrices	213
11.1 The concept of a matrix	214
11.2 Determinant of a square matrix	215
11.3 Addition of matrices	217
11.4 Scalar multiplication of a matrix	219
11.5 Transpose of a matrix	220
11.6 Dot product of matrices	220
Introduction	220
Condition	222
Definition	222
Properties	223
11.7 Inverse of a matrix	225
Introduction	225
Definition	225
Conditions	226
Row reduction	226
Matrix inversion	227
Inverse of a product	230
Solving systems of linear equations	231
11.8 The Fibonacci operator	233
11.9 Exercises	235
Chapter 12 · Linear transformations	237
12.1 Translation	238
12.2 Scaling	243
12.3 Rotation	246
Rotation in 2D	246
Rotation in 3D	248
12.4 Reflection	250
12.5 Shearing	251
12.6 Composing basic transformations	254
2D rotation around an arbitrary center	256
3D scaling about an arbitrary center	259
2D reflection over an axis through the origin	260
2D reflection over an arbitrary axis	261
3D combined rotation	264
12.7 Conventions	265
12.8 Exercises	266

Chant	er 13 · Hypercomplex numbers	260
121	Complex numbers	209
13.1	Complex numbers	270
10.2	Complex conjugate	273
	Addition and subtraction	273
	Multiplication	275
	Division	213
133	Complex numbers and transformations	277
13.4	Complex continuation of the Fibonacci numbers	281
10.7	Integer Fibonacci numbers	281
	Complex Fibonacci numbers	281
13.5	Quaternions	282
13.6	Quaternion arithmetics	284
2010	Addition and subtraction	285
	Multiplication	285
	Ouaternion conjugate	287
	Inverse quaternion	288
13.7	Quaternions and rotation	288
13.8	Exercises	293
Chapt	er 14 · Bezier curves	295
14.1	Vector equation of segments	296
	Linear Bezier segment	296
	Quadratic Bezier segment	297
	Cubic Bezier segment	298
	Bezier segments of higher degree	300
14.2	De Casteljau algorithm	301
14.3	Bezier curves	302
	Concatenation	302
	Linear transformations	304
	Illustrations	304
14.4	Matrix representation	306
	Linear Bezier segment	306
	Quadratic Bezier segment	307
	Cubic Bezier segment	308
14.5	B-splines	310
	Cubic B-splines	310
	Matrix representation	311
	De Boor's algorithm	313
14.6	Exercises	315

Annex A · Real numbers in computers	317
A.1 Scientific notation	317
A.2 The decimal computer	317
A.3 Special values	318
Annex B · Notations and Conventions	319
B.1 Alphabets	319
Latin alphabet	319
Greek alphabet	319
B.2 Mathematical symbols	320
Sets	320
Mathematical symbols	321
Mathematical keywords	321
Numbers	322
Annex C · The International System of Units (SI)	323
C.1 SI Prefixes	323
C.2 SI Base measures	324
C.3 SI Supplementary measure	324
C.4 SI Derived measures	325
Annex D · Companion website	327
D.1 Interactivities	327
D.2 Solutions	327
Bibliography	328
Index	331

This book is dedicated to Malaika.

"Sometimes I'm black, sometimes I'm white it all depends on who is on the other side there are things they can not see and there are things I can not hide"

Bruno Deneckere (Someday, June 2006)

Acknowledgments

We hereby insist to thank a lot of people who made this book possible: Prof. Dr. Leo Storme, Wim Serras, Wouter Tansens, Wouter Verweirder, Koen Samyn, Hilde De Maesschalck, Ellen Deketele, Conny Meuris, Hans Ameel, Dr. Rolf Mertig, Dick Verkerck, ir. Gose Fischer, Prof. Dr. Fred Simons, Sofie Eeckeman, Dr. Luc Gheysens, Dr. Bavo Langerock, Wauter Leenknecht, Marijn Verspecht, Sarah Rommens, Prof. Dr. Marcus Greferath, Dr. Cornelia Roessing, Tim De Langhe, Niels Janssens, Peter Flynn, Jurgen Leemans, Hilde Vanmechelen, Jef De Langhe, Ann Deraedt, Rita Vanmeirhaeghe, Prof. Dr. Jan Van Geel, Dr. Ann Dumoulin, Bart Uyttenhove, Rik Leenknegt, Peter Verswyvelen, Roel Vandommele, ir. Lode De Geyter, Bart Leenknegt, Olivier Rysman, ir. Johan Gielis, Frederik Jacques, Kristel Balcaen, ir. Wouter Gevaert, Bart Gardin, Dieter Roobrouck, Dr. Yu-Sung Chang (*WolframDemonstrations*), Prof. Dr. Sy Blinder (*WolframDemonstrations*), Prof. Dr. Mark McClure (*WolframDemonstrations*), Dr. Felipe Dimer de Oliveira (*WolframDemonstrations*), Steven Verborgh, Ingrid Viaene, Kayla Chauveau, Angelika Kirkorova, Thomas Vanhoutte, Fries Carton and anyone whom we might have forgotten!

As this chapter offers all necessary mathematical skills for a full mastering of all further topics explained in this book, we strongly recommend it. To serve its purpose, the successive paragraphs below refresh some required aspects of mathematical language as used on the applied level.

1.1 Algebra

REAL NUMBERS

We typeset the set of:

- \triangleright natural numbers (unsigned integers) as \mathbb{N} including zero,
- \triangleright integer numbers as \mathbb{Z} including zero,
- \triangleright rational numbers as \mathbb{Q} including zero,
- \triangleright real numbers (floats) as \mathbb{R} including zero.

All the above make a chain of subsets: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

To avoid possible confusion, we outline a brief glossary of mathematical terms. We recall that using the correct mathematical terms reflects a correct mathematical thinking. Putting down ideas in the correct words is of major importance for a profound insight.

Sets

- ▷ We recall writing all **subsets** in between braces, e.g. the **empty set** appears as {}.
- ▷ We define a **singleton** as any subset containing only one element, e.g. $\{5\} \subset \mathbb{N}$, as a subset of natural numbers.
- ▷ We define a **pair** as any subset containing just two elements, e.g. $\{115, -4\} \subset \mathbb{Z}$, as a subset of integers. In programming the boolean values *true* and *false* make up a pair $\{true, false\}$ called the boolean set which we typeset as \mathbb{B} .
- ▷ We define $\mathbb{Z}^- = \{..., -3, -2, -1\}$ whenever we need negative integers only. We express symbolically that -1234 is an **element** of \mathbb{Z}^- by typesetting $-1234 \in \mathbb{Z}^-$.
- \triangleright We typeset the **setminus** operator to delete elements from a set by using a backslash, e.g. $\mathbb{N} \setminus \{0\}$ reading all natural numbers except zero, $\mathbb{Q} \setminus \mathbb{Z}$ meaning all pure rational numbers after all integer values left out and $\mathbb{R} \setminus \{0,1\}$ expressing all real numbers apart from zero and one.

Calculation basics

operation	example	а	b	с
to add	a+b=c	term	term	sum
to subtract	a-b=c	term	term	difference
to multiply	$a \cdot b = c$	factor	factor	product
to divide	$\frac{a}{b} = c, b \neq 0$	numerator	divisor or denominator	quotient or fraction
to exponentiate	$a^b = c$	base	exponent	power
to take root	$\sqrt[b]{a} = c$	radicand	index	radical

We write the **opposite** of a real number *r* as -r, defined by the sum r + (-r) = 0. We typeset the **reciprocal** of a nonzero real number *r* as $\frac{1}{r}$ or r^{-1} , defined by the product $r \cdot r^{-1} = 1$.

We define **subtraction** as equivalent to adding the opposite: a - b = a + (-b). We define **division** as equivalent to multiplying with the reciprocal: $a : b = a \cdot b^{-1}$.

When we mix operations we need to apply priority rules for them. There is a fixed priority list 'PEMDAS' in performing mixed operations in \mathbb{R} that can easily be memorized by 'Please Excuse My Dear Aunt Sally'.

- ▷ First process all that is delimited in between Parentheses,
- ▷ then Exponentiate,
- ▷ then Multiply and Divide from left to right,
- ▷ finally Add and Subtract from left to right.

ANIMATION MATHS

Now we discuss the **distributive law** ruling within \mathbb{R} , which we define as threading a 'superior' operation over an 'inferior' operation. Conclusively, distributing requires two *different* operations.

Hence we distribute *exponentiating* over *multiplication* as in $(a \cdot b)^3 = a^3 \cdot b^3$. Likewise rules *multiplying* over *addition* as in $3 \cdot (a+b) = 3 \cdot a + 3 \cdot b$.

However we should never stumble on this 'Stairway of Distributivity' by going too fast:

$$(a+b)^3 \neq a^3 + b^3,$$

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b},$$

$$\sqrt{x^2 + y^2} \neq x + y.$$

Fractions

A **fraction** is what we call any rational number written as $\frac{t}{n}$ given $t, n \in \mathbb{Z}$ and $n \neq 0$, wherein *t* is called the **numerator** and *n* the **denominator**. We define the reciprocal of a nonzero fraction $\frac{t}{n}$ as $\frac{1}{\frac{t}{n}} = \frac{n}{t}$ or as the power $\left(\frac{t}{n}\right)^{-1}$. We define the opposite fraction as $-\frac{t}{n} = \frac{-t}{n} = \frac{t}{-n}$. We summarize fractional arithmetics:

sum	$\frac{t}{n} + \frac{a}{b} = \frac{t \cdot b + n \cdot a}{n \cdot b},$
difference	$\frac{t}{n} - \frac{a}{b} = \frac{t \cdot b - n \cdot a}{n \cdot b},$
product	$\frac{t}{n} \cdot \frac{a}{b} = \frac{t \cdot a}{n \cdot b},$
division	$\frac{\frac{t}{n}}{\frac{a}{b}} = \frac{t}{n} \cdot \frac{b}{a},$
exponentiation	$\left(\frac{t}{n}\right)^m = \frac{t^m}{n^m},$
singular fractions	$rac{1}{0} = \pm \infty$ infinity,
	$\frac{0}{0} = ?$ indeterminate.

Powers

We define a **power** as any real number written as g^m , wherein g is called its **base** and m its **exponent**. The opposite of g^m is simply $-g^m$. The reciprocal of g^m is $\frac{1}{g^m} = g^{-m}$, given $g \neq 0$.

According to the exponent type we distinguish between:

$$g^{3} = g \cdot g \cdot g \qquad \qquad 3 \in \mathbb{N},$$

$$g^{0} = 1$$

$$g^{0} = 1$$

$$g \neq 0.$$

Whilst calculating powers we may have to:

 $\begin{array}{ll} \mbox{multiply} & g^3 \cdot g^2 = g^{3+2} = g^5, \\ \mbox{divide} & \frac{g^3}{g^2} = g^3 \cdot g^{-2} = g^{3-2} = g^1, \\ \mbox{exponentiate} & \left(g^3\right)^2 = g^{3\cdot 2} = g^6 \mbox{ them.} \\ \end{array}$

We insist on avoiding typesetting radicals like $\sqrt[7]{g^3}$ and strongly recommend their contemporary notation using radicand g and exponent $\frac{3}{7}$, consequently exponentiating g to $g^{\frac{3}{7}}$. We recall the fact that all square roots are non-negative numbers, $\sqrt{a} = a^{\frac{1}{2}} \in \mathbb{R}^+$ for $a \in \mathbb{R}^+$.

As well knowing the above exponent types as understanding the above rules to calculate them are inevitable to use powers successfully. We advise memorizing the integer squares running from $1^2 = 1, 2^2 = 4, ...,$ up to $15^2 = 225, 16^2 = 256$ and the integer cubes running from $1^3 = 1, 2^3 = 8, ...,$ up to $7^3 = 343, 8^3 = 512$ in order to easily recognize them.

Recall that the only way out of any power is exponentiating with its reciprocal exponent. For this purpose we need to exponentiate both left hand side and right hand side of any given relation (see also paragraph 1.2).

Example: Find x when $\sqrt[7]{x^3} = 5$ by exponentiating this power.

$$x^{\frac{3}{7}} = 5 \Longleftrightarrow \left(x^{\frac{3}{7}}\right)^{\frac{7}{3}} = (5)^{\frac{7}{3}} \Longleftrightarrow x \approx 42.7494.$$

We emphasize the above strategy as the only successful one to free base x from its exponent, yielding its correct expression numerically approximated if we like to.

Example: Find x when $x^2 = 5$ by exponentiating this power.

$$x^{2} = 5 \iff (x^{2})^{\frac{1}{2}} = (5)^{\frac{1}{2}} \text{ or } -(5)^{\frac{1}{2}} \iff x \approx 2.23607 \text{ or } -2.23607.$$

We recall the above double solution whenever we free base *x* from an *even* exponent, yielding their correct expression as accurate as we like to.

Mathematical expressions

Composed mathematical expressions can often seem intimidating or cause confusion. To gain transparancy in them, we firstly recall indexed variables which we define as subscripted to count them: $x_1, x_2, x_3, x_4, \ldots, x_{99999}, x_{100000}, \ldots$, and $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots$. It is common practice in industrial research to use thousands of variables, so just picking unindexed characters would be insufficient. Taking our own alphabet as an example, it would only provide us with 26 characters.

We define finite expressions as composed of (mathematical) operations on objects (numbers, variables or structures). We can for instance analyze the expression $(3a + x)^4$ by drawing its **tree form**. This example reveals a Power having exponent 4 and a subexpression in its base. The base itself yields a sum of the variable x Plus another subexpression. This final subexpression shows the product 3 Times a.

Let us also evaluate this expression $(3a+x)^4$. Say a = 1, then we see our expression partly collaps to $(3+x)^4$. If we on top of this assign x = 2, our expression then finally turns to the numerical value $(3+2)^4 = 5^4 = 625$.

When we expand this power to its **pure sum expression** $81a^4 + 108a^3x + 54a^2x^2 + 12ax^3 + x^4$, we did nothing but *reshape* its **pure product expression** $(3a + x)^4$.

We warn that trying to solve this expression - which is not a relation - is completely in vain. Recall that inequalities, equations and systems of equations or inequalities are the only objects in the universe we can (try to) solve mathematically.

Relational operators

We also refresh the use of correct terms for inequalities and equations.

We define an **inequality** as any *variable* expression comparing a left hand side to a right hand side by applying the 'is-(strictly)-less-than' or by applying the 'is-(strictly)-greater-than' operator. For example, we can read $(3a + x)^4 \leq (b+4)(x+3)$ containing variables *a*, *x*, *b*. Consequently we may solve such inequality for any of the unknown quantities *a*, *x* or *b*.

We define an **equation** as any *variable* expression comparing a left hand side to a right hand side by applying the 'is-equal-to' operator. For example $(3a + x)^4 = (b+4)(x+3)$ is an equation containing variables *a*, *x*, *b*. Consequently we also may solve equations for